EN
Let φ:ℝ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let Σ = {(x,φ(x)): |x| ≤ 1} and let σ be the Borel measure on Σ defined by $σ(A) = ∫_{B} χ_{A}(x,φ(x))dx$ where B is the unit open ball in ℝ² and dx denotes the Lebesgue measure on ℝ². We show that the composition of the Fourier transform in ℝ³ followed by restriction to Σ defines a bounded operator from $L^{p}(ℝ³)$ to $L^{q}(Σ,dσ)$ for certain p,q. For m ≥ 6 the results are sharp except for some border points.