PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2003 | 159 | 3 | 403-415
Tytuł artykułu

Reflexivity and approximate fixed points

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Banach space X is reflexive if and only if every bounded sequence {xₙ} in X contains a norm attaining subsequence. This means that it contains a subsequence ${x_{n_k}}$ for which $sup_{f∈S_{X*}} lim sup_{k→∞} f(x_{n_k})$ is attained at some f in the dual unit sphere $S_{X*}$. A Banach space X is not reflexive if and only if it contains a normalized sequence {xₙ} with the property that for every $f ∈ S_{X*}$, there exists $g ∈ S_{X*}$ such that $lim sup_{n→∞}f(xₙ) < lim inf_{n→∞}g(xₙ)$. Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded closed convex set which has the approximate fixed point property for nonexpansive mappings.
Słowa kluczowe
Twórcy
  • Mathematical Institute, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha, Czech Republic
autor
  • Department of Mathematics, The Technion - Israel Institute of Technology, 32000 Haifa, Israel
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm159-3-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.