EN
We study the extremal volume of central hyperplane sections of complex n-dimensional $l_{p}$-balls with 0 < p ≤ 2. We show that the minimum corresponds to hyperplanes orthogonal to vectors ξ = (ξ¹,...,ξⁿ) ∈ ℂⁿ with |ξ¹| = ... = |ξⁿ|, and the maximum corresponds to hyperplanes orthogonal to vectors with only one non-zero coordinate.