PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wynik贸w
Czasopismo
2003 | 158 | 3 | 287-301
Tytu艂 artyku艂u

Algebraic isomorphisms and Jordan derivations of 饾挜-subspace lattice algebras

Tre艣膰 / Zawarto艣膰
Warianty tytu艂u
J臋zyki publikacji
EN
Abstrakty
EN
It is shown that every algebraic isomorphism between standard subalgebras of 饾挜-subspace lattice algebras is quasi-spatial and every Jordan derivation of standard subalgebras of 饾挜-subspace lattice algebras is an additive derivation. Also, it is proved that every finite rank operator in a 饾挜-subspace lattice algebra can be written as a finite sum of rank one operators each belonging to that algebra. As an additional result, a multiplicative bijection of a 饾挜-subspace lattice algebra onto an arbitrary ring is proved to be automatically additive. Those results can be applied to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.
S艂owa kluczowe
Tw贸rcy
autor
  • Department of Mathematics, Suzhou University, Suzhou 215006, P.R. China
autor
  • Department of Mathematics, Nanjing University, Nanjing 210093, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-3-7
JavaScript jest wy艂膮czony w Twojej przegl膮darce internetowej. W艂膮cz go, a nast臋pnie od艣wie偶 stron臋, aby m贸c w pe艂ni z niej korzysta膰.