Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
It is shown that if A is a bounded linear operator on a complex Hilbert space, then
$w(A) ≤ 1/2 (||A|| + ||A²||^{1/2})$,
where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.
$w(A) ≤ 1/2 (||A|| + ||A²||^{1/2})$,
where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.
Słowa kluczowe
Kategorie tematyczne
- 47A30: Norms (inequalities, more than one norm, etc.)
- 15A60: Norms of matrices, numerical range, applications of functional analysis to matrix theory
- 26C10: Polynomials: location of zeros
- 47A12: Numerical range, numerical radius
- 30C15: Zeros of polynomials, rational functions, and other analytic functions (e.g. zeros of functions with bounded Dirichlet integral)
Czasopismo
Rocznik
Tom
Numer
Strony
11-17
Opis fizyczny
Daty
wydano
2003
Twórcy
autor
- Department of Mathematics, University of Jordan, Amman, Jordan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm158-1-2