Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Studia Mathematica

2003 | 155 | 2 | 145-152

## The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

EN

### Abstrakty

EN
Denote by span{f₁,f₂,...} the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following.
Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose $(λ_{j})_{j=1}^{∞}$ is a sequence of distinct positive numbers. Then $span{1,x^{λ₁},x^{λ₂},...}$ is dense in C[0,1] if and only if
$∑^{∞}_{j=1} (λ_{j})/(λ_{j}²+1) = ∞$.
Moreover, if
$∑_{j=1}^{∞} (λ_{j})/(λ_{j}²+1) < ∞$,
then every function from the C[0,1] closure of $span{1,x^{λ₁},x^{λ₂},...}$ can be represented as an analytic function on {z ∈ ℂ ∖ (-∞, 0]: |z| < 1} restricted to (0,1).
This result improves an earlier result by P. Borwein and Erdélyi stating that if
$∑_{j=1}^{∞} (λ_{j})/(λ_{j}²+1) < ∞$,
then every function from the C[0,1] closure of $span{1,x^{λ₁},x^{λ₂},...}$ is in $C^{∞}(0,1)$. Our result may also be viewed as an improvement, extension, or completion of earlier results by Müntz, Szász, Clarkson, Erdős, L. Schwartz, P. Borwein, Erdélyi, W. B. Johnson, and Operstein.

145-152

wydano
2003

### Twórcy

autor
• Department of Mathematics, Texas A&M University, College Station, TX 77843, U.S.A.