PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2003 | 155 | 2 | 145-152
Tytuł artykułu

The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Denote by span{f₁,f₂,...} the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following.
Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose $(λ_{j})_{j=1}^{∞}$ is a sequence of distinct positive numbers. Then $span{1,x^{λ₁},x^{λ₂},...}$ is dense in C[0,1] if and only if
$∑^{∞}_{j=1} (λ_{j})/(λ_{j}²+1) = ∞$.
Moreover, if
$∑_{j=1}^{∞} (λ_{j})/(λ_{j}²+1) < ∞$,
then every function from the C[0,1] closure of $span{1,x^{λ₁},x^{λ₂},...}$ can be represented as an analytic function on {z ∈ ℂ ∖ (-∞, 0]: |z| < 1} restricted to (0,1).
This result improves an earlier result by P. Borwein and Erdélyi stating that if
$∑_{j=1}^{∞} (λ_{j})/(λ_{j}²+1) < ∞$,
then every function from the C[0,1] closure of $span{1,x^{λ₁},x^{λ₂},...}$ is in $C^{∞}(0,1)$. Our result may also be viewed as an improvement, extension, or completion of earlier results by Müntz, Szász, Clarkson, Erdős, L. Schwartz, P. Borwein, Erdélyi, W. B. Johnson, and Operstein.
Słowa kluczowe
Twórcy
  • Department of Mathematics, Texas A&M University, College Station, TX 77843, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm155-2-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.