Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2002 | 151 | 1 | 49-65

Tytuł artykułu

Bounds for quotients in rings of formal power series with growth constraints

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In rings $Γ_{M}$ of formal power series in several variables whose growth of coefficients is controlled by a suitable sequence $M = (M_{l})_{l≥0}$ (such as rings of Gevrey series), we find precise estimates for quotients F/Φ, where F and Φ are series in $Γ_{M}$ such that F is divisible by Φ in the usual ring of all power series. We give first a simple proof of the fact that F/Φ belongs also to $Γ_{M}$, provided $Γ_{M}$ is stable under derivation. By a further development of the method, we obtain the main result of the paper, stating that the ideals generated by a given analytic germ in rings of ultradifferentiable germs are closed provided the generator is homogeneous and has an isolated singularity in ℝⁿ. The result is valid under the aforementioned assumption of stability under derivation, and it does not involve (non-)quasianalyticity properties.

Słowa kluczowe

Twórcy

  • CNRS-UMR 8524, Bâtiment M2, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm151-1-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.