PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2002 | 149 | 1 | 39-62
Tytuł artykułu

Separate and joint similarity to families of normal operators

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sets of bounded linear operators 𝓢,𝓣 ⊂ ℬ(H) (ℋ is a Hilbert space) are similar if there exists an invertible (in ℬ(H)) operator G such that $G^{-1}·𝓢·G = 𝓣$. A bounded operator is scalar if it is similar to a normal operator. 𝓢 is jointly scalar if there exists a set 𝓝 ⊂ ℬ(H) of normal operators such that 𝓢 and 𝓝 are similar. 𝓢 is separately scalar if all its elements are scalar. Some necessary and sufficient conditions for joint scalarity of a separately scalar abelian set of Hilbert space operators are presented (Theorems 3.7, 4.4 and 4.6).
Continuous algebra homomorphisms between the algebra of all complex-valued continuous functions on a compact Hausdorff space and the algebra of all bounded operators in a Hilbert space are studied.
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-sm149-1-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.