EN
Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let
$L = ∑_{j=1}^{p} (X²_{j} + Y²_{j}) -∑_{j=p+1}^{n} (X²_{j} + Y²_{j})$,
where {X₁,Y₁,...,Xₙ,Yₙ,T} denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.