Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2001 | 144 | 1 | 39-61

Tytuł artykułu

Spectral decompositions, ergodic averages, and the Hilbert transform

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Let U be a trigonometrically well-bounded operator on a Banach space 𝔛, and denote by ${𝔄ₙ(U)}_{n=1}^{∞}$ the sequence of (C,2) weighted discrete ergodic averages of U, that is,
$𝔄ₙ(U) = 1/n ∑_{0<|k|≤n} (1 - |k|/(n+1)) U^{k}$.
We show that this sequence ${𝔄ₙ(U)}_{n=1}^{∞}$ of weighted ergodic averages converges in the strong operator topology to an idempotent operator whose range is {x ∈ 𝔛: Ux = x}, and whose null space is the closure of (I - U)𝔛. This result expands the scope of the traditional Ergodic Theorem, and thereby serves as a link between Banach space spectral theory and ergodic operator theory. We also develop a characterization of trigonometrically well-bounded operators by their ability to "transfer" the discrete Hilbert transform to the Banach space setting via (C,1) weighting of Hilbert averages, and these results together with those on weighted ergodic averages furnish an explicit expression for the spectral decomposition of a trigonometrically well-bounded operator U on a Banach space in terms of strong limits of appropriate averages of the powers of U. We also treat the special circumstances where corresponding results can be obtained with the (C,1) and (C,2) weights removed.

Słowa kluczowe

Twórcy

autor
  • Department of Mathematics, University of Illinois, 1409 W. Green St., Urbana, IL 61801, U.S.A.
  • Department of Mathematics and Statistics, University of Edinburgh, James Clerk Maxwell Building, Edinburgh EH9 3JZ, Scotland

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-sm144-1-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.