Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 232 | 3 | 281-293

Tytuł artykułu

Arhangel'skiĭ sheaf amalgamations in topological groups

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We consider amalgamation properties of convergent sequences in topological groups and topological vector spaces. The main result of this paper is that, for arbitrary topological groups, Nyikos's property $α_{1.5}$ is equivalent to Arhangel'skiĭ's formally stronger property α₁. This result solves a problem of Shakhmatov (2002), and its proof uses a new perturbation argument. We also prove that there is a topological space X such that the space $C_{p}(X)$ of continuous real-valued functions on X with the topology of pointwise convergence has Arhangel'skiĭ's property α₁ but is not countably tight. This follows from results of Arhangel'skiĭ-Pytkeev, Moore and Todorčević, and provides a new solution, with stronger properties than the earlier solution, of a problem of Averbukh and Smolyanov (1968) concerning topological vector spaces.

Twórcy

autor
  • Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
  • Department of Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
  • Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Str. 25, 1090 Wien, Austria

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm994-1-2016