EN
We study a class of abelian groups that can be defined as Polish pro-countable groups, as non-archimedean groups with a compatible two-sided invariant metric or as quasi-countable groups, i.e., closed subdirect products of countable discrete groups, endowed with the product topology.
We show that for every non-locally compact, abelian quasi-countable group G there exists a closed L ≤ G and a closed, non-locally compact K ≤ G/L which is a direct product of discrete countable groups. As an application we prove that for every abelian Polish group G of the form H/L, where H,L ≤ Iso(X) and X is a locally compact separable metric space (in particular, for every abelian, quasi-countable group G), the following holds: G is locally compact iff every continuous action of G on a Polish space Y induces an orbit equivalence relation that is reducible to an equivalence relation with countable classes.