Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 232 | 3 | 227-248

Tytuł artykułu

Generalized Choquet spaces

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We introduce an analog to the notion of Polish space for spaces of weight ≤ κ, where κ is an uncountable regular cardinal such that $κ^{<κ} = κ$. Specifically, we consider spaces in which player II has a winning strategy in a variant of the strong Choquet game which runs for κ many rounds. After discussing the basic theory of these games and spaces, we prove that there is a surjectively universal such space and that there are exactly $2^{κ}$ many such spaces up to homeomorphism. We also establish a Kuratowski-like theorem that under mild hypotheses, any two such spaces of size > κ are isomorphic by a κ-Borel function. We then consider a dynamic version of the Choquet game, and show that in this case the existence of a winning strategy for player II implies the existence of a winning tactic, that is, a strategy that depends only on the most recent move. We also study a generalization of Polish ultrametric spaces where the ultrametric is allowed to take values in a set of size κ. We show that in this context, there is a family of universal Urysohn-type spaces, and we give a characterization of such spaces which are hereditarily κ-Baire.

Słowa kluczowe

Rocznik

Tom

232

Numer

3

Strony

227-248

Opis fizyczny

Daty

wydano
2016

Twórcy

  • Department of Mathematics, Boise State University, 1910 University Drive, Boise, ID 83725-1555, U.S.A.
  • Mathematisches Institut, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm924-12-2015
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.