Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We apply the theory of infinite two-person games to two well-known problems in topology: Suslin's Problem and Arhangel'skii's problem on the weak Lindelöf number of the $G_{δ}$ topology on a compact space. More specifically, we prove results of which the following two are special cases: 1) every linearly ordered topological space satisfying the game-theoretic version of the countable chain condition is separable, and 2) in every compact space satisfying the game-theoretic version of the weak Lindelöf property, every cover by $G_{δ}$ sets has a continuum-sized subcollection whose union is $G_{δ}$-dense.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
229-239
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Instituto de Matemática e Estatística (IME-USP), Universidade de São Paulo, Rua do Matão, 1010 - Cidade Universitária, 05508-090 São Paulo - SP, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm232-3-2016