Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
This paper is devoted to new algebraic structures, called qualgebras and squandles. Topologically, they emerge as an algebraic counterpart of knotted 3-valent graphs, just like quandles can be seen as an "algebraization" of knots. Algebraically, they are modeled after groups with conjugation and multiplication/squaring operations. We discuss basic properties of these structures, and introduce and study the notions of qualgebra/squandle 2-cocycles and 2-coboundaries. Knotted 3-valent graph invariants are constructed by counting qualgebra/squandle colorings of graph diagrams, and are further enhanced using 2-cocycles. A classification of size 4 qualgebras/squandles and a description of their second cohomology groups are given.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
167-204
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- OCAMI, Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka, 558-8585, Japan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm230-2-3