The Todorcevic ordering 𝕋(X) consists of all finite families of convergent sequences in a given topological space X. Such an ordering was defined for the special case of the real line by S. Todorcevic (1991) as an example of a Borel ordering satisfying ccc that is not σ-finite cc and even need not have the Knaster property. We are interested in properties of 𝕋(X) where the space X is taken as a parameter. Conditions on X are given which ensure the countable chain condition and its stronger versions for 𝕋(X). We study the properties of 𝕋(X) as a forcing notion and the homogeneity of the generated complete Boolean algebra.