Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 225 | 1 | 277-303

Tytuł artykułu

Torsion in Khovanov homology of semi-adequate links

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
The goal of this paper is to address A. Shumakovitch's conjecture about the existence of ℤ₂-torsion in Khovanov link homology. We analyze torsion in Khovanov homology of semi-adequate links via chromatic cohomology for graphs, which provides a link between link homology and the well-developed theory of Hochschild homology. In particular, we obtain explicit formulae for torsion and prove that Khovanov homology of semi-adequate links contains ℤ₂-torsion if the corresponding Tait-type graph has a cycle of length at least 3. Computations show that torsion of odd order exists but there is no general theory to support these observations. We conjecture that the existence of torsion is related to the braid index.

Rocznik

Tom

225

Numer

1

Strony

277-303

Daty

wydano
2014

Twórcy

  • Department of Mathematics, The George Washington University, Washington, DC 20052, U.S.A.
  • University of Gdańsk, Poland
  • University of Maryland, College Park, MD 20742, U.S.A.
  • Department of Mathematics, North Carolina State University, Raleigh, NC 27695, U.S.A.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-13