Warianty tytułu
Języki publikacji
Abstrakty
A. Miller proved the consistent existence of a coanalytic two-point set, Hamel basis and MAD family. In these cases the classical transfinite induction can be modified to produce a coanalytic set. We generalize his result formulating a condition which can be easily applied in such situations. We reprove the classical results and as a new application we show that consistently there exists an uncountable coanalytic subset of the plane that intersects every C¹ curve in a countable set.
Słowa kluczowe
Kategorie tematyczne
- 54H05: Descriptive set theory (topological aspects of Borel, analytic, projective, etc. sets)
- 03E15: Descriptive set theory
- 03E45: Inner models, including constructibility, ordinal definability, and core models
- 28A05: Classes of sets (Borel fields, σ -rings, etc.), measurable sets, Suslin sets, analytic sets
Czasopismo
Rocznik
Tom
Numer
Strony
155-174
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Institute of Mathematics, Eötvös Loránd University, Pázmány Péter s. 1/c, Budapest 1117, Hungary
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-2-2