Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We discuss the Borel Tukey ordering on cardinal invariants of the continuum. We observe that this ordering makes sense for a larger class of cardinals than has previously been considered. We then provide a Borel version of a large portion of van Douwen's diagram. For instance, although the usual proof of the inequality 𝔭 ≤ 𝔟 does not provide a Borel Tukey map, we show that in fact there is one. Afterwards, we revisit a result of Mildenberger concerning a generalization of the unsplitting and splitting numbers. Lastly, we use our results to give an embedding from the inclusion ordering on 𝒫(ω) into the Borel Tukey ordering on cardinal invariants.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
29-48
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Department of Mathematics, Boise State University, 1910 University Dr., Boise, ID 83725-1555, U.S.A., Formerly at York University, Toronto, Canada
autor
- Alfréd Rényi Matematikai Kutatóintézet, Magyar Tudományos Akadémia, 13-15 Reáltanoda utca, H-1053 Budapest, Hungary
autor
- Department of Mathematics and Statistics, N520 Ross, York University, 4700 Keele St., Toronto, ON, M3J 1P3, Canada
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-2