Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 220 | 2 | 155-189

Tytuł artykułu

Clopen graphs

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A graph G on a topological space X as its set of vertices is clopen if the edge relation of G is a clopen subset of X² without the diagonal.
We study clopen graphs on Polish spaces in terms of their finite induced subgraphs and obtain information about their cochromatic numbers. In this context we investigate modular profinite graphs, a class of graphs obtained from finite graphs by taking inverse limits. This continues the investigation of continuous colorings on Polish spaces and their homogeneity numbers started in [11] and [9].
We show that clopen graphs on compact spaces have no infinite induced subgraphs that are 4-saturated. In particular, there are countably infinite graphs such as Rado's random graph that do not embed into any clopen graph on a compact space. Using similar methods, we show that the quasi-orders of clopen graphs on compact zero-dimensional metric spaces with topological or combinatorial embeddability are Tukey equivalent to $ω^{ω}$ with eventual domination. In particular, the dominating number 𝔡 is the least size of a family of clopen graphs on compact metric spaces such that every clopen graph on a compact zero-dimensional metric space embeds into a member of the family. We also show that there are ℵ₀-saturated clopen graphs on $ω^{ω}$, while no ℵ₁-saturated graph embeds into a clopen graph on a Polish space. There is, however, an ℵ₁-saturated $F_{σ}$ graph on $2^{ω}$.

Słowa kluczowe

Twórcy

  • ausdorff Center for Mathematics, Endenicher Allee 62, 53115 Bonn, Germany

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-2-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.