EN
We establish some new properties of remainders of metrizable spaces. In particular, we show that if the weight of a metrizable space X does not exceed $2^{ω}$, then any remainder of X in a Hausdorff compactification is a Lindelöf Σ-space. An example of a metrizable space whose remainder in some compactification is not a Lindelöf Σ-space is given. A new class of topological spaces naturally extending the class of Lindelöf Σ-spaces is introduced and studied. This leads to the following theorem: if a metrizable space X has a remainder Y with a $G_{δ}$-diagonal, then both X and Y are separable and metrizable. Some new results on remainders of topological groups are also established.