PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 214 | 1 | 27-56
Tytuł artykułu

L²-homology and reciprocity for right-angled Coxeter groups

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let W be a Coxeter group and let μ be an inner product on the group algebra ℝW. We say that μ is admissible if it satisfies the axioms for a Hilbert algebra structure. Any such inner product gives rise to a von Neumann algebra $𝒩_{μ}$ containing ℝW. Using these algebras and the corresponding von Neumann dimensions we define $L²_{μ}$-Betti numbers and an $L²_{μ}$-Euler charactersitic for W. We show that if the Davis complex for W is a generalized homology manifold, then these Betti numbers satisfy a version of Poincaré duality. For arbitrary Coxeter groups, finding interesting admissible products is difficult; however, if W is right-angled, there are many. We exploit this fact by showing that when W is right-angled, there exists an admissible inner product μ such that the $L²_{μ}$-Euler characteristic is 1/W(t) where W(t) is the growth series corresponding to a certain normal form for W. We then show that a reciprocity formula for this growth series that was recently discovered by the second author is a consequence of Poincaré duality.
Słowa kluczowe
Twórcy
autor
  • Department of Mathematical Sciences, University of Wisconsin, Milwaukee, WI 53201, U.S.A.
  • Department of Mathematics, and Computer Science, Santa Clara University, Santa Clara, CA 95053, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-1-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.