PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 209 | 1 | 43-57
Tytuł artykułu

The Suslinian number and other cardinal invariants of continua

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By the Suslinian number Sln(X) of a continuum X we understand the smallest cardinal number κ such that X contains no disjoint family ℂ of non-degenerate subcontinua of size |ℂ| > κ. For a compact space X, Sln(X) is the smallest Suslinian number of a continuum which contains a homeomorphic copy of X. Our principal result asserts that each compact space X has weight ≤ Sln(X)⁺ and is the limit of an inverse well-ordered spectrum of length ≤ Sln(X)⁺, consisting of compacta with weight ≤ Sln(X) and monotone bonding maps. Moreover, w(X) ≤ Sln(X) if no Sln(X)⁺-Suslin tree exists. This implies that under the Suslin Hypothesis all Suslinian continua are metrizable, which answers a question of Daniel et al. [Canad. Math. Bull. 48 (2005)]. On the other hand, the negation of the Suslin Hypothesis is equivalent to the existence of a hereditarily separable non-metrizable Suslinian continuum. If X is a continuum with $Sln(X) < 2^{ℵ₀}$, then X is 1-dimensional, has rim-weight ≤ Sln(X) and weight w(X) ≥ Sln(X). Our main tool is the inequality w(X) ≤ Sln(X)·w(f(X)) holding for any light map f: X → Y.
Słowa kluczowe
Twórcy
autor
  • Uniwersytet Humanistyczno-Przyrodniczy Jana Kochanowskiego, Kielce, Poland
  • Department of Mathematics, Ivan Franko Lviv National University, Lviv, Ukraine
  • Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Vorob'evy Gory, 1, Moscow, Russia
autor
  • Instytut Matematyki i Informatyki, Uniwersytet Opolski, Oleska 48, 45-052 Opole, Poland
autor
  • Nipissing University, North Bay, Ontario, Canada
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.