PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 208 | 2 | 173-192
Tytuł artykułu

Universally measurable sets in generic extensions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A subset of a topological space is said to be universally measurable if it is measured by the completion of each countably additive σ-finite Borel measure on the space, and universally null if it has measure zero for each such atomless measure. In 1908, Hausdorff proved that there exist universally null sets of real numbers of cardinality ℵ₁, and thus that there exist at least $2^{ℵ₁}$ such sets. Laver showed in the 1970's that consistently there are just continuum many universally null sets of reals. The question of whether there exist more than continuum many universally measurable sets of reals was asked by Mauldin in 1978. We show that consistently there exist only continuum many universally measurable sets. This result also follows from work of Ciesielski and Pawlikowski on the iterated Sacks model. In the models we consider (forcing extensions by suitably-sized random algebras) every set of reals is universally measurable if and only if it and its complement are unions of ground model continuum many Borel sets.
Słowa kluczowe
Twórcy
autor
  • Department of Mathematics, Miami University, Oxford, OH 45056, U.S.A.
autor
  • Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095-1555, U.S.A.
  • The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
  • Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-2-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.