Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let f be a continuous map on a compact connected Riemannian manifold M. There are several ways to measure the dynamical complexity of f and we discuss some of them. This survey contains some results and open questions about relationships between the topological entropy of f, the volume growth of f, the rate of growth of periodic points of f, some invariants related to exterior powers of the derivative of f, and several invariants measuring the topological complexity of f: the degree (for the case when the manifold is orientable), the spectral radius of the map induced by f on the homology of M, the fundamental-group entropy, the asymptotic Lefschetz number and the asymptotic Nielsen number. In general these relations depend on the smoothness of f. Various examples are provided.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
307-327
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- Departament de Matematiques, Universitat Autonoma de Barcelona, Bellaterra, 08193, Spain
autor
- Centre de Recerca Matematica, Apartat 50, Bellaterra, 08193, Spain
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm206-0-19