Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 205 | 3 | 191-217

Tytuł artykułu

Generalized α-variation and Lebesgue equivalence to differentiable functions

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
We find conditions on a real function f:[a,b] → ℝ equivalent to being Lebesgue equivalent to an n-times differentiable function (n ≥ 2); a simple solution in the case n = 2 appeared in an earlier paper. For that purpose, we introduce the notions of $CBVG_{1/n}$ and $SBVG_{1/n}$ functions, which play analogous rôles for the nth order differentiability to the classical notion of a VBG⁎ function for the first order differentiability, and the classes $CBV_{1/n}$ and $SBV_{1/n}$ (introduced by Preiss and Laczkovich) for Cⁿ smoothness. As a consequence, we deduce that Lebesgue equivalence to an n-times differentiable function is the same as Lebesgue equivalence to a function f which is (n-1)-times differentiable with $f^{(n-1)}(·)$ pointwise Lipschitz. We also characterize functions that are Lebesgue equivalent to n-times differentiable functions with a.e. nonzero derivatives. As a corollary, we establish a generalization of Zahorski's Lemma for higher order differentiability.

Twórcy

autor
  • Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
  • PIRA Energy Group, 3 Park Ave FL 26, New York, NY 10016, U.S.A.

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-3-1