PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 205 | 1 | 1-27
Tytuł artykułu

The generic isometry and measure preserving homeomorphism are conjugate to their powers

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is known that there is a comeagre set of mutually conjugate measure preserving homeomorphisms of Cantor space equipped with the coinflipping probability measure, i.e., Haar measure. We show that the generic measure preserving homeomorphism is moreover conjugate to all of its powers. It follows that the generic measure preserving homeomorphism extends to an action of (ℚ, +) by measure preserving homeomorphisms, and, in fact, to an action of the locally compact ring 𝔄 of finite adèles.
Similarly, S. Solecki has proved that there is a comeagre set of mutually conjugate isometries of the rational Urysohn metric space. We prove that these are all conjugate with their powers and therefore also embed into ℚ-actions. In fact, we extend these actions to actions of 𝔄 as in the case of measure preserving homeomorphisms.
We also consider a notion of topological similarity in Polish groups and use this to give simplified proofs of the meagreness of conjugacy classes in the automorphism group of the standard probability space and in the isometry group of the Urysohn metric space.
Słowa kluczowe
Rocznik
Tom
205
Numer
1
Strony
1-27
Opis fizyczny
Daty
wydano
2009
Twórcy
  • Department of Mathematics, Statistics, and Computer Science (M/C 249), University of Illinois at Chicago, 851 S. Morgan St., Chicago, IL 60607-7045, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm205-1-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.