Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A point x is a (bow) tie-point of a space X if X∖{x} can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as $X = A {⋈ \limits_{x}} B$ where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah & Steprans) and in the recent study (by Levy and Dow & Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point of an involution on ℕ*. One application of the results in this paper is the consistency of there being a 2-to-1 continuous image of ℕ* which is not a homeomorph of ℕ*.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
191-210
Opis fizyczny
Daty
wydano
2009
Twórcy
autor
- University of North Carolina at Charlotte, Charlotte, NC 28223, U.S.A.
autor
- Department of Mathematics, Rutgers University, Hill Center, Piscataway, NJ 08854-8019, U.S.A.
- Institute of Mathematics, Hebrew University, Givat Ram, Jerusalem 91904, Israel
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm203-3-1