EN
For a given cardinal number 𝔞, we construct a totally ordered MV-algebra M(𝔞) having the property that every totally ordered MV-algebra of cardinality at most 𝔞 embeds into M(𝔞). In case 𝔞 = ℵ₀, the algebra M(𝔞) is the first known MV-algebra with respect to which the deductive system for the infinitely-valued Łukasiewicz's propositional logic is strongly complete.