EN
For n ≥ 2, the family of rational maps $F_{λ}(z) = zⁿ + λ/zⁿ$ contains a countably infinite set of parameter values for which all critical orbits eventually land after some number κ of iterations on the point at infinity. The Julia sets of such maps are Sierpiński curves if κ ≥ 3. We show that two such maps are topologically conjugate on their Julia sets if and only if they are Möbius or anti-Möbius conjugate, and we give a precise count of the number of topological conjugacy classes as a function of n and κ.