PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 201 | 3 | 241-259
Tytuł artykułu

Commuting involutions whose fixed point set consists of two special components

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let Fⁿ be a connected, smooth and closed n-dimensional manifold. We call Fⁿ a manifold with property 𝓗 when it has the following property: if $N^m$ is any smooth closed m-dimensional manifold with m > n and $T:N^m → N^m$ is a smooth involution whose fixed point set is Fⁿ, then m = 2n. Examples of manifolds with this property are: the real, complex and quaternionic even-dimensional projective spaces $RP^{2n}$, $CP^{2n}$ and $HP^{2n}$, and the connected sum of $RP^{2n}$ and any number of copies of Sⁿ × Sⁿ, where Sⁿ is the n-sphere and n is not a power of 2. In this paper we describe the equivariant cobordism classification of smooth actions $(M^m; Φ)$ of the group $Z₂^k$ on closed smooth m-dimensional manifolds $M^m$ for which the fixed point set of the action consists of two components K and L with property 𝓗, and where dim(K) < dim(L). The description is given in terms of the set of equivariant cobordism classes of involutions fixing K ∪ L.
Słowa kluczowe
Rocznik
Tom
201
Numer
3
Strony
241-259
Opis fizyczny
Daty
wydano
2008
Twórcy
  • Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP 13565-905, Brazil
  • Departamento de Ciências Exatas, Universidade Federal de Mato Grosso do Sul, Caixa Postal 210, Três Lagoas, MS 79603-011, Brazil
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm201-3-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.