PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 200 | 3 | 279-295
Tytuł artykułu

Non-locally compact Polish groups and two-sided translates of open sets

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the following question. Suppose that a Polish group G has the property that some non-empty open subset U is covered by finitely many two-sided translates of every other non-empty open subset of G. Is then G necessarily locally compact? Polish groups which do not have the above property are called strongly non-locally compact. We characterize strongly non-locally compact Polish subgroups of $S_{∞}$ in terms of group actions, and prove that certain natural classes of non-locally compact Polish groups are strongly non-locally compact. Next, we discuss applications of these results to the theory of left Haar null sets. Finally, we show that Polish groups such as the isometry group of the Urysohn space and the unitary group of the separable Hilbert space are strongly non-locally compact.
Słowa kluczowe
Twórcy
  • Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green St., Urbana, IL 61801, U.S.A.
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm200-3-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.