EN
A countable CW complex K is quasi-finite (as defined by A. Karasev) if for every finite subcomplex M of K there is a finite subcomplex e(M) such that any map f: A → M, where A is closed in a separable metric space X satisfying XτK, has an extension g: X → e(M). Levin's results imply that none of the Eilenberg-MacLane spaces K(G,2) is quasi-finite if G ≠ 0. In this paper we discuss quasi-finiteness of all Eilenberg-MacLane spaces. More generally, we deal with CW complexes with finitely many nonzero Postnikov invariants.
Here are the main results of the paper:
Theorem 0.1. Suppose K is a countable CW complex with finitely many nonzero Postnikov invariants. If π₁(K) is a locally finite group and K is quasi-finite, then K is acyclic.
Theorem 0.2. Suppose K is a countable non-contractible CW complex with finitely many nonzero Postnikov invariants. If π₁(K) is nilpotent and K is quasi-finite, then K is extensionally equivalent to S¹.