EN
We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the $J_{n,r} = E(n)⁎(M_{r}E(r))$, where 0 ≤ r ≤ n, with the endomorphism ring of $J_{n,r}$ being $\widehat{E(r)}*\widehat{E(r)}$, where $\widehat{E(r)}$ denotes the completion of E(r).