PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 194 | 1 | 15-44
Tytuł artykułu

Invariant Borel liftings for category algebras of Baire groups

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
R. A. Johnson showed that there is no translation-invariant Borel lifting for the measure algebra of ℝ/ℤ equipped with Haar measure, a result which was generalized by M. Talagrand to non-discrete locally compact abelian groups and by J. Kupka and K. Prikry to arbitrary non-discrete locally compact groups. In this paper we study analogs of these results for category algebras (the Borel σ-algebra modulo the ideal of first category sets) of topological groups. Our main results are for the class of non-discrete separable metric groups. We show that if G in this class is weakly α-favorable, then the category algebra of G has no left-invariant Borel lifting. (This particular result does not require separability and implies a corresponding result for locally compact groups which are not necessarily metric.) Under the Continuum Hypothesis, many groups in the class have a dense Baire subgroup which has a left-invariant Borel lifting. On the other hand, there is a model in which the category algebra of a Baire group in the class never has a left-invariant Borel lifting. The model is a variation on one constructed by A. W. Miller and the author where every second category set of reals has a relatively second category intersection with a nowhere dense perfect set.
Słowa kluczowe
Twórcy
  • Department of Mathematics and Statistics, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm194-1-2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.