PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 193 | 3 | 189-241
Tytuł artykułu

Hopf algebras and dendriform structures arising from parking functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We introduce a graded Hopf algebra based on the set of parking functions (hence of dimension $(n+1)^{n-1}$ in degree n). This algebra can be embedded into a noncommutative polynomial algebra in infinitely many variables. We determine its structure, and show that it admits natural quotients and subalgebras whose graded components have dimensions respectively given by the Schröder numbers (plane trees), the Catalan numbers, and powers of 3. These smaller algebras are always bialgebras and belong to some family of di- or trialgebras occurring in the works of Loday and Ronco.
Moreover, the fundamental notion of parkization allows one to endow the set of parking functions of fixed length with an associative multiplication (different from the one coming from the Shi arrangement), leading to a generalization of the internal product of symmetric functions. Several of the intermediate algebras are stable under this operation. Among them, one finds the Solomon descent algebra but also a new algebra based on a Catalan set, admitting the Solomon algebra as a left ideal.
Słowa kluczowe
Rocznik
Tom
193
Numer
3
Strony
189-241
Opis fizyczny
Daty
wydano
2007
Twórcy
  • Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
  • Institut Gaspard Monge, Université de Marne-la-Vallée, 5 Boulevard Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-3-1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.