Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We show that the Covering Principle known for continuous maps of the real line also holds for functions whose graph is a connected $G_{δ}$ subset of the plane. As an application we find an example of an approximately continuous (hence Darboux Baire 1) function f: [0,1] → [0,1] such that any closed subset of [0,1] can be translated so as to become an ω-limit set of f. This solves a problem posed by Bruckner, Ceder and Pearson [Real Anal. Exchange 15 (1989/90)].
Słowa kluczowe
Kategorie tematyczne
- 26A21: Classification of real functions; Baire classification of sets and functions
- 26A18: Iteration
- 54C30: Real-valued functions
- 26A15: Continuity and related questions (modulus of continuity, semicontinuity, discontinuities, etc.)
- 37E05: Maps of the interval (piecewise continuous, continuous, smooth)
Czasopismo
Rocznik
Tom
Numer
Strony
133-140
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
- Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm193-2-2