PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Fundamenta Mathematicae

2007 | 193 | 1 | 37-77
Tytuł artykułu

### Distortion bounds for $C^{2+η}$ unimodal maps

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We obtain estimates for derivative and cross-ratio distortion for $C^{2+η}$ (any η > 0) unimodal maps with non-flat critical points. We do not require any "Schwarzian-like" condition. For two intervals J ⊂ T, the cross-ratio is defined as the value
B(T,J): = (|T| |J|)/(|L| |R|)
where L,R are the left and right connected components of T∖J respectively. For an interval map g such that $g_T: T → ℝ$ is a diffeomorphism, we consider the cross-ratio distortion to be
B(g,T,J): = B(g(T),g(J))/B(T,J).
We prove that for all 0 < K < 1 there exists some interval I₀ around the critical point such that for any intervals J ⊂ T, if $fⁿ|_T$ is a diffeomorphism and fⁿ(T) ⊂ I₀ then
B(fⁿ,T,J) > K.
Then the distortion of derivatives of $fⁿ|_J$ can be estimated with the Koebe lemma in terms of K and B(fⁿ(T),fⁿ(J)). This tool is commonly used to study topological, geometric and ergodic properties of f. Our result extends one of Kozlovski.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
37-77
Opis fizyczny
Daty
wydano
2007
Twórcy
autor
• Department of Mathematics, University of Surrey, Guildford, Surrey, GU2 7XH, UK
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.