Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN

Widoczny [Schowaj] Abstrakt
Liczba wyników
• # Artykuł - szczegóły

## Fundamenta Mathematicae

2006 | 191 | 3 | 187-199

## Extension of point-finite partitions of unity

EN

### Abstrakty

EN
A subspace A of a topological space X is said to be $P^{γ}$-embedded ($P^{γ}$(point-finite)-embedded) in X if every (point-finite) partition of unity α on A with |α| ≤ γ extends to a (point-finite) partition of unity on X. The main results are: (Theorem A) A subspace A of X is $P^{γ}$(point-finite)-embedded in X iff it is $P^{γ}$-embedded and every countable intersection B of cozero-sets in X with B ∩ A = ∅ can be separated from A by a cozero-set in X. (Theorem B) The product A × [0,1] is $P^{γ}$(point-finite)-embedded in X × [0,1] iff A × Y is $P^{γ}$(point-finite)-embedded in X × Y for every compact Hausdorff space Y with w(Y) ≤ γ iff A is $P^{γ}$-embedded in X and every subset B of X obtained from zero-sets by means of the Suslin operation, with B ∩ A = ∅, can be separated from A by a cozero-set in X. These characterizations are used to answer certain questions of Dydak. In particular, it is shown that, assuming CH, the property of A × [0,1] to be $P^{γ}$(point-finite)-embedded in X × [0,1] is stronger than that of A being $P^{γ}$(point-finite)-embedded in X.

187-199

wydano
2006

### Twórcy

autor
• Faculty of Education, Shizuoka University, Ohya, Shizuoka 422-8529, Japan
autor
• Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan

### Identyfikatory JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.