Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Khovanov homology for knots has generated a flurry of activity in the topology community. This paper studies the Khovanov type cohomology for graphs with a special attention to torsion. When the underlying algebra is ℤ[x]/(x²), we determine precisely those graphs whose cohomology contains torsion. For a large class of algebras, we show that torsion often occurs. Our investigation of torsion led to other related general results. Our computation could potentially be used to predict the Khovanov-Rozansky sl(m) homology of knots (in particular (2,n) torus knot). We also predict that our work is connected with Hochschild and Connes cyclic homology of algebras.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
139-177
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
- Department of Mathematics, The George Washington University, 1922 F street NW, Washington, DC 20052, U.S.A.
autor
- Department of Mathematics, The George Washington University, Old Main Bldg, 1922 F St. NW, Washington, DC 20052, U.S.A.
autor
- Department of Mathematics, The George Washington University, 1922 F street NW, Washington, DC 20052, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm190-0-5