Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
A bottleneck in a dendroid is a continuum that intersects every arc connecting two non-empty open sets. Piotr Minc proved that every dendroid contains a point, which we call a center, contained in arbitrarily small bottlenecks. We study the effect that the set of centers in a dendroid has on its structure. We find that the set of centers is arc connected, that a dendroid with only one center has uncountably many arc components in the complement of the center, and that, in this case, every open set intersects uncountably many of these arc components. Moreover, we find that a map from one dendroid to another preserves the center structure if each point inverse has at most countably many components.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
173-183
Opis fizyczny
Daty
wydano
2006
Twórcy
autor
- Mathematics Department, Parker Hall, Auburn University, Auburn, AL 36849-5310, U.S.A.
autor
- Department of Mathematics and Computer Science, University of Richmond, Richmond, VA 23173, U.S.A.
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm189-2-6