PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 186 | 1 | 85-96
Tytuł artykułu

Expanding repellers in limit sets for iterations of holomorphic functions

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that for Ω being an immediate basin of attraction to an attracting fixed point for a rational mapping of the Riemann sphere, and for an ergodic invariant measure μ on the boundary FrΩ, with positive Lyapunov exponent, there is an invariant subset of FrΩ which is an expanding repeller of Hausdorff dimension arbitrarily close to the Hausdorff dimension of μ. We also prove generalizations and a geometric coding tree abstract version. The paper is a continuation of a paper in Fund. Math. 145 (1994) by the author and Anna Zdunik, where the density of periodic orbits in FrΩ was proved.
Słowa kluczowe
Twórcy
  • Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm186-1-7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.