EN
Let V be an orthogonal representation of a compact Lie group G and let S(V),D(V) be the unit sphere and disc of V, respectively. If F: V → ℝ is a G-invariant C¹-map then the G-equivariant gradient C⁰-map ∇F: V → V is said to be admissible provided that $(∇F)^{-1}(0) ∩ S(V) = ∅$. We classify the homotopy classes of admissible G-equivariant gradient maps ∇F: (D(V),S(V)) → (V,V∖{0}).