EN
Given a link map f into a manifold of the form Q = N × ℝ, when can it be deformed to an "unlinked" position (in some sense, e.g. where its components map to disjoint ℝ-levels)? Using the language of normal bordism theory as well as the path space approach of Hatcher and Quinn we define obstructions $ω̃_{ε}(f)$, ε = + or ε = -, which often answer this question completely and which, in addition, turn out to distinguish a great number of different link homotopy classes. In certain cases they even allow a complete link homotopy classification.
Our development parallels recent advances in Nielsen coincidence theory and also leads to the notion of Nielsen numbers of link maps.
In the special case when N is a product of spheres sample calculations are carried out. They involve the homotopy theory of spheres and, in particular, James-Hopf invariants.