Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We study diagonalization in the context of implicit proofs of [10]. We prove that at least one of the following three conjectures is true:
∙ There is a function f: {0,1}* → {0,1} computable in 𝓔 that has circuit complexity $2^{Ω(n)}$.
∙ 𝓝 𝓟 ≠ co 𝓝 𝓟.
∙ There is no p-optimal propositional proof system.
We note that a variant of the statement (either 𝓝 𝓟 ≠ co 𝓝 𝓟 or 𝓝 𝓔 ∩ co 𝓝 𝓔 contains a function $2^{Ω(n)}$ hard on average) seems to have a bearing on the existence of good proof complexity generators. In particular, we prove that if a minor variant of a recent conjecture of Razborov [17, Conjecture 2] is true (stating conditional lower bounds for the Extended Frege proof system EF) then actually unconditional lower bounds would follow for EF.
∙ There is a function f: {0,1}* → {0,1} computable in 𝓔 that has circuit complexity $2^{Ω(n)}$.
∙ 𝓝 𝓟 ≠ co 𝓝 𝓟.
∙ There is no p-optimal propositional proof system.
We note that a variant of the statement (either 𝓝 𝓟 ≠ co 𝓝 𝓟 or 𝓝 𝓔 ∩ co 𝓝 𝓔 contains a function $2^{Ω(n)}$ hard on average) seems to have a bearing on the existence of good proof complexity generators. In particular, we prove that if a minor variant of a recent conjecture of Razborov [17, Conjecture 2] is true (stating conditional lower bounds for the Extended Frege proof system EF) then actually unconditional lower bounds would follow for EF.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
181-192
Opis fizyczny
Daty
wydano
2004
Twórcy
autor
- Mathematical Institute, Academy of Sciences, Žitná 25, CZ 115 67 Praha 1, Czech Republic
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm182-2-7