Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 181 | 3 | 273-280

Tytuł artykułu

The Hurewicz covering property and slaloms in the Baire space

Autorzy

Treść / Zawartość

Języki publikacji

EN

Abstrakty

EN
According to a result of Kočinac and Scheepers, the Hurewicz covering property is equivalent to a somewhat simpler selection property: For each sequence of large open covers of the space one can choose finitely many elements from each cover to obtain a groupable cover of the space. We simplify the characterization further by omitting the need to consider sequences of covers: A set of reals X has the Hurewicz property if, and only if, each large open cover of X contains a groupable subcover. This solves in the affirmative a problem of Scheepers. The proof uses a rigorously justified abuse of notation and a "structure" counterpart of a combinatorial characterization, in terms of slaloms, of the minimal cardinality 𝔟 of an unbounded family of functions in the Baire space. In particular, we obtain a new characterization of 𝔟.

Twórcy

autor
  • Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm181-3-5