Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 180 | 2 | 161-183

Tytuł artykułu

The Lindelöf property and σ-fragmentability

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the previous paper, we, together with J. Orihuela, showed that a compact subset X of the product space $[-1,1]^{D}$ is fragmented by the uniform metric if and only if X is Lindelöf with respect to the topology γ(D) of uniform convergence on countable subsets of D. In the present paper we generalize the previous result to the case where X is K-analytic. Stated more precisely, a K-analytic subspace X of $[-1,1]^{D}$ is σ-fragmented by the uniform metric if and only if (X,γ(D)) is Lindelöf, and if this is the case then $(X,γ(D))^{ℕ}$ is also Lindelöf. We give several applications of this theorem in areas of topology and Banach spaces. We also show by examples that the main theorem cannot be extended to the cases where X is Čech-analytic and Lindelöf or countably K-determined.

Słowa kluczowe

Twórcy

autor
  • Departamento de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
autor
  • University of Washington, Department of Mathematics, Box 354350, Seattle, WA 98195-4350, U.S.A.

Bibliografia

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_4064-fm180-2-3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.