Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 178 | 2 | 171-188
Tytuł artykułu

Strong Fubini properties for measure and category

Treść / Zawartość
Warianty tytułu
Języki publikacji
Let (FP) abbreviate the statement that $∫_{0}^{1} (∫_{0}^{1} fdy)dx = ∫_{0}^{1} (∫_{0}^{1} fdx)dy$
holds for every bounded function f: [0,1]² → ℝ whenever each of the integrals involved exists. We shall denote by (SFP) the statement that the equality above holds for every bounded function f: [0,1]² → ℝ having measurable vertical and horizontal sections. It follows from well-known results that both of (FP) and (SFP) are independent of the axioms of ZFC. We investigate the logical connections of these statements with several other strong Fubini type properties of the ideal of null sets. In particular, we establish the equivalence of (SFP) to the nonexistence of certain sets with paradoxical properties, a phenomenon that was already known for (FP). We also give the category analogues of these statements and, whenever possible, we try to put the statements in a setting of general ideals as initiated by Recław and Zakrzewski.
Słowa kluczowe
  • Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, U.S.A.
  • Department of Analysis, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
  • Department of Mathematics, University College London, WC1E 6BT London, England
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.