PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 177 | 3 | 241-250
Tytuł artykułu

Realization and nonrealization of Poincaré duality quotients of 𝔽₂[x,y] as topological spaces

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let $d_{2,0} = x²y + xy², d_{2,1} = x² + xy + y² ∈ 𝔽₂[x, y]$ be the two Dickson polynomials. If a and b are positive integers, the ideal $(d_{2,0}^a,d_{2,1}^b) ⊂ 𝔽₂[x,y]$ is invariant under the action of the mod 2 Steenrod algebra 𝒜* if and only if when we write $b = 2^t · k$ with k odd, then $a ≤ 2^t$. The quotient algebra $𝔽₂[x,y]/(d_{2,0}^a,d_{2,1}^b)$ is a Poincaré duality algebra and for such a and b admits an unstable action of 𝒜*. It has trivial Wu classes if and only if $a = 2^t$ for some t ≥ 0 and $b = 2^t(2^s - 1)$ for some s > 0. We ask under what conditions on a and b, 𝔽₂[x,y]/(d_{2,0}^a,d_{2,1}^b)$ appears as the mod 2 cohomology of a manifold. In this note we show that for $a = 2^t = b$ there is a topological space whose cohomology is $𝔽₂[x,y]/(d_{2,0}^{2^t},d_{2,1}^{2^t})$ if and only if t = 0, 1, 2, or 3, and in these cases the space may be taken to be a smooth manifold.
Słowa kluczowe
Kategorie tematyczne
Rocznik
Tom
177
Numer
3
Strony
241-250
Opis fizyczny
Daty
wydano
2003
Twórcy
  • AG-Invariantentheorie, Mathematisches Institut, Georg-August-Universität, D-37073 Göttingen, Germany
autor
  • AG-Invariantentheorie, Mathematisches Institut, Georg-August-Universität, D-37073 Göttingen, Germany
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-fm177-3-4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.